3.481 \(\int \frac{x}{(d+e x) (a d e+(c d^2+a e^2) x+c d e x^2)^{3/2}} \, dx\)

Optimal. Leaf size=138 \[ \frac{2 \left (3 a e^2+c d^2\right ) \left (a e^2+c d^2+2 c d e x\right )}{3 e \left (c d^2-a e^2\right )^3 \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}-\frac{2 d}{3 e (d+e x) \left (c d^2-a e^2\right ) \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}} \]

[Out]

(-2*d)/(3*e*(c*d^2 - a*e^2)*(d + e*x)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]) + (2*(c*d^2 + 3*a*e^2)*(c*d
^2 + a*e^2 + 2*c*d*e*x))/(3*e*(c*d^2 - a*e^2)^3*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.0937172, antiderivative size = 138, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 38, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.053, Rules used = {792, 613} \[ \frac{2 \left (3 a e^2+c d^2\right ) \left (a e^2+c d^2+2 c d e x\right )}{3 e \left (c d^2-a e^2\right )^3 \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}-\frac{2 d}{3 e (d+e x) \left (c d^2-a e^2\right ) \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}} \]

Antiderivative was successfully verified.

[In]

Int[x/((d + e*x)*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)),x]

[Out]

(-2*d)/(3*e*(c*d^2 - a*e^2)*(d + e*x)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]) + (2*(c*d^2 + 3*a*e^2)*(c*d
^2 + a*e^2 + 2*c*d*e*x))/(3*e*(c*d^2 - a*e^2)^3*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])

Rule 792

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp
[((d*g - e*f)*(d + e*x)^m*(a + b*x + c*x^2)^(p + 1))/((2*c*d - b*e)*(m + p + 1)), x] + Dist[(m*(g*(c*d - b*e)
+ c*e*f) + e*(p + 1)*(2*c*f - b*g))/(e*(2*c*d - b*e)*(m + p + 1)), Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p,
x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] && ((L
tQ[m, -1] &&  !IGtQ[m + p + 1, 0]) || (LtQ[m, 0] && LtQ[p, -1]) || EqQ[m + 2*p + 2, 0]) && NeQ[m + p + 1, 0]

Rule 613

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-3/2), x_Symbol] :> Simp[(-2*(b + 2*c*x))/((b^2 - 4*a*c)*Sqrt[a + b*x
 + c*x^2]), x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rubi steps

\begin{align*} \int \frac{x}{(d+e x) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx &=-\frac{2 d}{3 e \left (c d^2-a e^2\right ) (d+e x) \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}-\frac{\left (c d^2+3 a e^2\right ) \int \frac{1}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx}{3 e \left (c d^2-a e^2\right )}\\ &=-\frac{2 d}{3 e \left (c d^2-a e^2\right ) (d+e x) \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}+\frac{2 \left (c d^2+3 a e^2\right ) \left (c d^2+a e^2+2 c d e x\right )}{3 e \left (c d^2-a e^2\right )^3 \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\\ \end{align*}

Mathematica [A]  time = 0.0373915, size = 100, normalized size = 0.72 \[ \frac{2 \left (a^2 e^3 (2 d+3 e x)+2 a c d e \left (3 d^2+5 d e x+3 e^2 x^2\right )+c^2 d^3 x (3 d+2 e x)\right )}{3 (d+e x) \left (c d^2-a e^2\right )^3 \sqrt{(d+e x) (a e+c d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[x/((d + e*x)*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)),x]

[Out]

(2*(c^2*d^3*x*(3*d + 2*e*x) + a^2*e^3*(2*d + 3*e*x) + 2*a*c*d*e*(3*d^2 + 5*d*e*x + 3*e^2*x^2)))/(3*(c*d^2 - a*
e^2)^3*(d + e*x)*Sqrt[(a*e + c*d*x)*(d + e*x)])

________________________________________________________________________________________

Maple [A]  time = 0.052, size = 149, normalized size = 1.1 \begin{align*} -{\frac{ \left ( 2\,cdx+2\,ae \right ) \left ( 6\,acd{e}^{3}{x}^{2}+2\,{c}^{2}{d}^{3}e{x}^{2}+3\,{a}^{2}{e}^{4}x+10\,ac{d}^{2}{e}^{2}x+3\,{c}^{2}{d}^{4}x+2\,{a}^{2}d{e}^{3}+6\,ac{d}^{3}e \right ) }{3\,{a}^{3}{e}^{6}-9\,{a}^{2}c{d}^{2}{e}^{4}+9\,a{c}^{2}{d}^{4}{e}^{2}-3\,{c}^{3}{d}^{6}} \left ( cde{x}^{2}+a{e}^{2}x+c{d}^{2}x+ade \right ) ^{-{\frac{3}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x/(e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2),x)

[Out]

-2/3*(c*d*x+a*e)*(6*a*c*d*e^3*x^2+2*c^2*d^3*e*x^2+3*a^2*e^4*x+10*a*c*d^2*e^2*x+3*c^2*d^4*x+2*a^2*d*e^3+6*a*c*d
^3*e)/(a^3*e^6-3*a^2*c*d^2*e^4+3*a*c^2*d^4*e^2-c^3*d^6)/(c*d*e*x^2+a*e^2*x+c*d^2*x+a*d*e)^(3/2)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 20.4064, size = 621, normalized size = 4.5 \begin{align*} \frac{2 \,{\left (6 \, a c d^{3} e + 2 \, a^{2} d e^{3} + 2 \,{\left (c^{2} d^{3} e + 3 \, a c d e^{3}\right )} x^{2} +{\left (3 \, c^{2} d^{4} + 10 \, a c d^{2} e^{2} + 3 \, a^{2} e^{4}\right )} x\right )} \sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x}}{3 \,{\left (a c^{3} d^{8} e - 3 \, a^{2} c^{2} d^{6} e^{3} + 3 \, a^{3} c d^{4} e^{5} - a^{4} d^{2} e^{7} +{\left (c^{4} d^{7} e^{2} - 3 \, a c^{3} d^{5} e^{4} + 3 \, a^{2} c^{2} d^{3} e^{6} - a^{3} c d e^{8}\right )} x^{3} +{\left (2 \, c^{4} d^{8} e - 5 \, a c^{3} d^{6} e^{3} + 3 \, a^{2} c^{2} d^{4} e^{5} + a^{3} c d^{2} e^{7} - a^{4} e^{9}\right )} x^{2} +{\left (c^{4} d^{9} - a c^{3} d^{7} e^{2} - 3 \, a^{2} c^{2} d^{5} e^{4} + 5 \, a^{3} c d^{3} e^{6} - 2 \, a^{4} d e^{8}\right )} x\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2),x, algorithm="fricas")

[Out]

2/3*(6*a*c*d^3*e + 2*a^2*d*e^3 + 2*(c^2*d^3*e + 3*a*c*d*e^3)*x^2 + (3*c^2*d^4 + 10*a*c*d^2*e^2 + 3*a^2*e^4)*x)
*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)/(a*c^3*d^8*e - 3*a^2*c^2*d^6*e^3 + 3*a^3*c*d^4*e^5 - a^4*d^2*e^7
+ (c^4*d^7*e^2 - 3*a*c^3*d^5*e^4 + 3*a^2*c^2*d^3*e^6 - a^3*c*d*e^8)*x^3 + (2*c^4*d^8*e - 5*a*c^3*d^6*e^3 + 3*a
^2*c^2*d^4*e^5 + a^3*c*d^2*e^7 - a^4*e^9)*x^2 + (c^4*d^9 - a*c^3*d^7*e^2 - 3*a^2*c^2*d^5*e^4 + 5*a^3*c*d^3*e^6
 - 2*a^4*d*e^8)*x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x}{\left (\left (d + e x\right ) \left (a e + c d x\right )\right )^{\frac{3}{2}} \left (d + e x\right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(e*x+d)/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(3/2),x)

[Out]

Integral(x/(((d + e*x)*(a*e + c*d*x))**(3/2)*(d + e*x)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \left [\mathit{undef}, \mathit{undef}, \mathit{undef}, 1\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2),x, algorithm="giac")

[Out]

[undef, undef, undef, 1]